Primitive matrices over polynomial semirings
نویسندگان
چکیده
منابع مشابه
On idempotent matrices over semirings
Idempotent matrices play a significant role while dealing with different questions in matrix theory and its applications. It is easy to see that over a field any idempotent matrix is similar to a diagonal matrix with 0 and 1 on the main diagonal. Over a semiring the situation is quite different. For example, the matrix J of all ones is idempotent over Boolean semiring. The first characterizatio...
متن کاملSolving Linear Equations over Polynomial Semirings
We consider the problem of solving linear equations over various semirings. In particular, solving of linear equations over polynomial rings with the additional restriction that the solutions must have only non-negative coefficients is shown to be undecidable. Applications to undecidability proofs of several unification problems are illustrated, one of which, unification modulo one associative-...
متن کاملOptimization over Positive Polynomial Matrices
Positive polynomial matrices play a fundamental role in systems and control theory. We give here a simplified proof of the fact that the convex set of positive polynomial matrices can be parameterized using block Hankel and block Toeplitz matrices. We also show how to derive efficient computational algorithms for optimization problems over positive pseudo polynomial matrices over the real line,...
متن کاملTan's Epsilon-Determinant and Ranks of Matrices over Semirings
We use the ϵ-determinant introduced by Ya-Jia Tan to define a family of ranks of matrices over certain semirings. We show that these ranks generalize some known rank functions over semirings such as the determinantal rank. We also show that this family of ranks satisfies the rank-sum and Sylvester inequalities. We classify all bijective linear maps which preserve these ranks.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.12.029